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NON-RESONANT NUCLEAR REACTIONS AT STELIAR TEMPERATURES

. The purpose of this nofe is to describe a systematic and aczurate
procedure for calculating the rates of non-resonant nuclear reactions at
‘etellar temperatures and to indicate the approximations that are involved,
and the éorrections that are necessary, vhen using the currently fashionable
formulae (Caughlan and Fowler 1962; Parker, Bahcall, and Fowler 1964),
The number of nuclear reactions, P, occurring per unit of time per

unit of volume between nuclei of type one and type two is
P =nn (1+5.))(av) ~ ‘(1)
172 12 ’ .

where n, and n, are the number densities of nuclei of type one and two and
(o v) 1is the interaction cross section times the relative velocity
averaged over a Maxwell-Boltzmenn distribution. In analyzing non-resonant
reactions at stellar temperatures, it is conventional and convenient to
represent the cross section (in the center of mass frame) by (Burbidge,

Burbidge, Fowler, and Hoyle 1957; Cameron 1963; Fowler and Vogl 1964)
- -1
oE) = Bl s(E) e - bR (2a)
vhere the exponential factor represents the Gamow penetration factor, and

1/2 -
D = 2xazlz2(mAc2/2)/ . (2v)
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Here, mA 1s the reduced mass of the colliding nuclei., The reaction rate

P ia therefore proportional to an integral of the form

(}o aE S(E) exp - (E/5T + vE~/2) . (3)
o]

The usual evaiuation (Caughlan and Fowler 1962; Fowler and Vogl
1964) of I is accomplished by representing 8 in Eq. (3) by a two-i rm power
series about E equals zero and replacing the exponential by a Gaus:ian
centered at an energy E_ chosen such that the expoment, E/kT + b/VE, 18 an
extremum. Instead of making approximations with I in the form glven by
Eq. (3), we shall first rewrite I in a form that permits a power series
expansion in a parameter, 'r'l, that is small for all stellar problems
encountered so far.

In the usual notation (Parker, Bahcall, and Fowler 1964%; Fowler and

Vogl 1964),
P =S, e X 7.20 X »10'19 n(1) n(2) fl,a e (1+ 51,2)'1
(A Zl Z,) -1 reactions on™3 sec.l) o ’ (ka)
where rl’,‘, is an electron screening factor ax-xd
T = 3B /kT
~ u2.s (2.2 2,2 A1)/ - | (4v)
with B, s(bk 'n/a)"’/s»
- [(g @2 2,k )2 (mn A ce/a)]lls . ‘ (4e)
/




Here, § is the correction factor which arises from the variation of

eff
S with energy and the departure of the exponential in Eq. (3) from a

Gausslan shape. More explicitly, one can show that

s [(/0)™M2 (2 £ )T T exp - (/s + v Y2) g(B) &, (5)
eff o °

vwhich has, of course, the form indicated in Eq. (3). The bracketed
factors have been chosen for simplicity in the final answer.

The quantity T, defined by Eq. (4b), 1s large (typlcally 15 to 40)
for all non-resonant nmuclear reactions of interest (p-p chain, CNO bi-cycle,
etc.). We therefore express seff as & power series in -r.l. This may bde
accomplished by the substitution (motivated by Salpeter's treatment of the

P-p reaction, Salpeter 1952):
B o= B (14722 : (6)

Inserting the above definition of u in Eq. (5), one finds

B )
Bpp = (x 1) Y2 {/2 au (exp - v¥)(exp + [(aus/s)(vl/a + )]
- _
(11/2 + 1) S(E, (1 + 1"1/2 u)a) du . (1)
Since e ' << -r'l, S,pe can be readily evaluated as a pover series in

™0 by replacing the lover limit of the integral in Eq. (7) by infinity amd
expanding exp [2\15/3 (1,1/2 + u)] and  S(E) (1 + -r':l'/2 w?) asa
Taylor series in u about u equals zero. The successive terms can be

2
grouped in descending integral powers of T (since e

-u is an even func-
tion of wu).
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One finds in this way that

s'() E,  8"(E,) E}°

1|5 S -2
=8B)|ll+r |[=+= + +06(r ;| - (8)
£ o 1z2*2 TE) 8(E,)
vhere 8B = d—gil)-
xnB
(]
2
end g"(s,) = L5x) :
dx x=E°

Note that up to order 7-2 , only first and second derivatives of S enter
Eq. (8).

In order to relate the above expression for B,pp b0 the usual
formula (Caughlen and Powler 1962; Parker, Bahcall, and Fowler 1964), one
must express the relevant :1uant1ties in terms of their values at E equals
zero (not Ec;)‘ If one does 80, there is no a priori assurance that, to
order 'r'l, only first end second derivatives of S are important. However,
this is a plausible assumption and is necessary in order to obtain a not
too complicated formula, We find (neglecting all derivatives higher than

the second derivative):

8'(0) E, + 5"(0) E2/2
5(0)

S ,.=8(0)|1+ +

eff

&) E, 5'(0) +( ) s"(0) E
'1—52" + 22, S(O) 2 A : (95)
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8"(0) E,

Seff = 5(0) [l + 1—27— + %&%?"(Eo +% kT) + —&0o)
(/2 + & kT;J . (9b)

If the last term in Egq. (Gb) is set equal to zero, then the above expres~
sion reduces to the usually quoted formula.
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